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A new pathogenetic mechanism leading to cancer has been delineated in the past 3 years when
human homologues of DNA mismatch repair (MMR) genes have been identified and shown to
be involved in various types of cancer. Germline mutations of MMR genes cause susceptibility to
a hereditary form of colon cancer, hereditary nonpolyposis colon cancer (HNPCC), which
represents one of the most common syndromes associated with cancer predisposition in man.

Tumors from HNPCC patients are hypermutable and show length variation at short tandem
repeat sequences, a phenomenon referred to as microsatellite instability or replication errors. A
similar abnormality is found in a proportion of sporadic tumors of the colorectum as well as a

variety of other organs; acquired mutations in MMR genes or other endogenous or exogenous

causes may underlie these cases. Genetic and biochemical characterization of the functions of
normal and mutated MMR genes elucidates mechanisms of cancer development and provides
tools for diagnostic applications. Environ Health Perspect 1 05(Suppl 4):775-780 (1997)
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Discovery of Human
Mismatch Repair Genes
The existence of mismatch repair (MMR)
enzymes in bacteria has been known for at

least two decades and more recently, similar
activities have been identified in yeast and
higher eukaryotes (1). The discovery of
human MMR genes was greatly facilitated
by advances made in genetic studies of
hereditary nonpolyposis colorectal cancer

(HNPCC). After the first HNPCC suscep-

tibility locus was mapped to chromosome
2p by linkage analysis (2), it was found that
tumors from HNPCC patients showed
instability at multiple random microsatellite
sequences throughout the genome (3). A
similar phenotype had previously been
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observed in bacterial and yeast strains with
DNA mismatch repair gene mutations
(4,5). These data together provided a func-
tional clue that resulted in the identification
of human homologues of bacterial and
yeast MMR genes (Figure 1).

Functions of the
MMR System
In Esherichia coli, mutS and mutL proteins
participate in two main repair pathways,
the methyl-directed long-patch and the very
short-patch (VSP) pathway (1,16). The
methyl-directed pathway functions by cor-
recting base-base mispairs, small insertions
and deletions resulting from errors in DNA
replication.The specific function of the
VSP pathway is to correct G-T mispairs in
nonreplicating DNA that arise as a conse-
quence of deamination of 5-methylcytosine
residues. Methyl-directed mismatch repair
in E. coli depends on 10 activities. Repair is
initiated by binding of mutS to the mis-
match, followed by the addition of mutL.
This complex activates mutH, an endonu-
clease, which makes a nick at a GATC site
with unmethylated adenine, located 1 to 2
kb from either side of the mismatch.
Subsequently, the portion containing the
mismatch is excised by a 3'-5' or 5'-3'
exonuclease and replaced by a new tract
synthesized by a DNA polymerase. In yeast,
after recognition of the mismatch by
MSH2, a heterodimer is formed by MLH1
and PMS1, followed by a ternary complex

formation by MLH1, PMS1, and MSH2
(17). This complex then recruits additional
proteins that accomplish the repair as in the
bacterial system.

The human MMR system is believed to
operate in more or less the same general
fashion. Biochemical analyses in human
cells have demonstrated that repair is
strand-specific and is directed by a nick
located 5' or 3' to the mismatch (18,19).
The mismatch-binding factor in humans
consists of two distinct proteins, the 100-
kD MSH2 and a recently identified 160-
kD polypeptide, G/T mismatch binding
protein (GTBP) (14). While E. coli has a
single mutL gene, human cells have at least
16 genes that specify mutL-like proteins
(Figure 1); whether they have different
functions with respect to each other is not
known. Recent studies have revealed some
differences between MMR proteins in their
capacities to repair specific types of bio-
chemical defects. While MSH2 and MLH1
seem to be equally important in single base
mismatch repair, MSH2 plays a more
prominent role in the repair of loops con-
taining five or more unpaired bases (20).
Human cells may be capable of repairing
loops of up to 14 nucleotides (21), which is
important since human DNA contains
numerous microsatellites that may generate
large loops as a consequence of strand slip-
page during replication. Furthermore, it is
suggested that GTBP is necessary for the
correction of base-base mispairs and one-
or two-nucleotide loops but may not be
absolutely required in the correction of
larger loops (22,23) (see also Figure 2).

Apart from being responsible for the
correction of biosynthetic errors in newly
synthesized DNA, the MMR system is
also presumed to repair exogenous chemi-
cal damage, such as lesions caused by
alkylating agents (16). Furthermore, the
system is implicated in the prevention of
recombination between quasi-homologous
(homeologous) sequences that have
diverged genetically (24).

Microsatellite Instability and
Its Occurrence in Cancer
Instability at short tandem repeat sequences
(microsatellites) reflects malfunction in the
replication or repair of DNA. For this rea-
son, it is also referred to as the replication
error (RER) phenomenon (3). Biochemical
studies by Parsons et al. (18) provided a
link between microsatellite instability and
defective mismatch repair. The abnormality
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Figure 1. Mut family of DNA mismatch repair genes. Location on human chromosomes is given in parentheses. Genes whose germline mutations cause predisposition to
HNPCC are underlined and those shown to be associated with microsatellite instability in human cancer are indicated with an asterisk. The references for human sequences
are as follows: hMLH1 (6,7); hPMS1 and hPMS2 (8); hPMS3-8 (9); hPMSR1-7 (10); hMSH2 (11,12); hMSH3 (13); GTBP-160 (14); and ERCC2/XPDC (15).

be caused by DNA polymerase slippage
1 (combined with inability to repair these

T N kinds of defects).
Microsatellite instability serves as a

useful marker of a "mutator" phenotype
characteristic of HNPCC and some spo-
radic tumors. Approximately 100,000
microsatellite repeats are scattered through-
out the human genome (29). About 90%
of colorectal cancers from HNPCC patients
show microsatellite instability and a major-
ity of microsatellite loci are apparently

2 involved (3,30). Thus, in HNPCC tumors,
T N tthe total number of mutations at micro-

satellite loci alone could be as high as
100,000 per cell. As shown in Table 1,
approximately 15% of apparently sporadic
colorectal carcinomas and a variable pro-

atic illustration of two main patterns of portion of other cancers also show this
tability, as seen after gel electrophore- abnormality. The genetic background of
Fied microsatellite sequences. N, normal microsatellite instability may not be the
)NA. Aberrant fragments are indicated same in HNPCC and various sporadic cases.
it 1 is constitutionally heterozygous and In HNPCC, the phenotype results from
zygous for the studied microsatellite inactivation of one of four MMR genes,
onsists of a ladder of extra fragments; a namely, MSH2, MLHJ, PMSJ, or PMS2.
%) of microsatellite loci that have been While structural defects in these genes are
no-, di-, tri-,or tetranucleotide repeats . . °
I. It is caused by mutations in HNPCC- demonstrable lin a proportion of sporadic
enes and is characteristic of HNPCC tumors as well (55), a significant fraction
adic tumors, which are typically part of may arise by other mechanisms, including
or spectrum (31). Type 2 consists of a mutations in other genes, for example
gment, a minority (a few percent) of DNA polymerase 6 (26). Even exogenous
ci that have been altered, and mononu- damage has been implicated (28). The pat-
(23) or tri- and tetranucleotide repeats tern of microsatellite instability may vary
narily involved. It is caused by mutations according to etiology (Figure 2).

on S; 1o7M r-TD2D 1an IT27 AAC'LJ19719-In UNA poIymerase o0zb), (i br-1-IobU UZ, WI)J (LI);
or possibly other MMR genes, or exposure to chemical
carcinogens (28). It is characteristic of sporadic tumors
that may or may not be part of the HNPCC spectrum.

appears as extra alleles observed in tumor
DNA when compared to normal DNA
from the same individual (Figure 2). These
aberrant-sized alleles result from a gain
or loss of short repeat units [e.g., CA
dinucleotides in a (CA)n repeat] that may

Model of Carcinogenesis in
HNPCC and Sporadic Tumors
with MMR Deficiency
Molecular genetic studies support the idea
that multiple genetic changes are necessary

for tumorigenesis. Statistically, it has been
estimated that colorectal tumors require
four to seven mutations to develop (56).
Colorectal carcinoma cell lines with MMR

deficiency are hypermutable with muta-
tion rates that can be several hundredfold
compared to normal human cells (18,57).
Importantly, mutations in HNPCC-
related MMR genes cause significantly ele-
vated mutation rates not only in repetitive
sequences but in nonrepetitive gene
sequences (such as the locus for hypoxan-
thine guanine phosphoribosyltransferase)
as well (57).

Figure 3 shows a model of colon cancer
development in HNPCC. The basic princi-
ples of this model are applicable to any
tumors with inactivation of both copies of a
MMR gene as an early event in their patho-
genesis. In tumors with MMR deficiency, a
classical tumor suppressor mechanism is
supported in that two hits are required to
cause a phenotypic effect (18,55,58). Most
MMR gene mutations are point mutations
resulting in truncated protein products
(59,60). Loss of a critical MMR activity as
a consequence of these mutations is pre-
sumed to occur early in tumor develop-
ment, already at the adenoma stage (61).
Ensuing genetic destabilization initiates a
cascade of further mutations (62), probably
targeting at different genes in tumors from
different organs. In colon cancer, multiple
somatic mutations, primarily single
nucleotide deletions and G:C to A:T transi-
tions, have been reported to occur in APC
and p53 genes (63). Furthermore, inacti-
vating frameshift mutations in a polyade-
nine tract located in the coding sequence of
the transforming growth factor D receptor
II (TGFP-RII) gene are frequent in colon,
but rare in endometrial cancers with
microsatellite instability, which suggests
different pathogenetic routes in these
tumors (64,65).

In some instances, even one hit (consti-
tutional heterozygosity for an MMR gene
mutation) may be sufficient for MMR
deficiency to become manifested (66).
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Table 1. Frequency of microsatellite instability (percent of tumors) in sporadic cancers. HNPCC spectrum refers to
tumors that occur in excess in HNPCC kindreds compared to the general population (31).

Part
Organ s

Colorectum

Endometrium

Stomach

Pancreas
Ovary

Kidney (adenocarcinoma)
Breast

Lung cancer
Small cell
Non-small cell

Brain
Testis (germ cell)

Bladder

Head and neck
Esophagus
Adenocarcinoma
Squamous cell carcinoma

Prostate
Chronic myeloid leukemia
Chronic phase
Blast crisis

t of HNPCC Frequency,
;pectrum

Yes 12
28a,b
16a
1 65a,b

Yes 17a
22a
20

Yes 39
31a
32a

Yes(?) 67
Yes 0

16
1ob

Yes 25a,b
No 0

4
20a
1 1 b

No 45a
No 2b

34a,b
6.5
21b

No 2b
No 0

l1ga,b
No)?) 3a,b

41 b
28

No 29

Note

Poly(A) sequences studied

Epithelial cancer

Loci on 3p mainly involved

Loci on 3p mainly studied

Loci on lq involved

Chromosome 9-specific loci studied
Tri- and tetranucleotide repeats studied
Tri- and tetranucleotide repeats studied

Reference

(32)
(33)
(30)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(38)
(41)
(38)
(25)
(42
(36)
(38)
(43)
(25)

(44)
(36)
(45)
(46)
(47)
(25)
(36)
(48)
(49)
(50)
(51)
(51)

No 22b
No 2
No 65a

No 0
No 53a

8Microsatellite instability at .2 loci (Type 1 in Figure 2)
Figure 2).

Despite elevated mutation rates in all tissues
examined, these patients had surprisingly
few tumors. It was hypothesized that muta-
tions per se might not be sufficient for a
high rate of tumorigenesis, but that other
factors would be necessary, such as expo-
sure to exogenous mutagenic compounds
that not only induce mutations but also
stimulate the cells to regenerate (66).

Recently, a time (rather than replication)
dependent model involving the MMR sys-
tem was proposed to generate multiple
mutations in cancer. In this model (67) it is
assumed that whenever MMR mechanisms
act on mismatched bases in nondividing

(54)
(54)

bMicrosatellite instability at 1 locus only (Type 2 in

cells, they will be unable to distinguish the
nascent and old strands and therefore
[analogous to nucleotide excision repair
mechanisms (68)] can lead to mutation
fixation rather than elimination. This
could explain the excessive numbers of new
mutations found in tumor cells of other-
wise normal (i.e., non-HNPCC) individu-
als and the increasing cancer incidences
according to age (67).

Future Prospects
Now that at least a proportion of
human MMR genes have been cloned and
characterized, the possible involvement of

First hit
Inherited mutation in one copy
of an MMR gene (every cell)

Second hit
Loss of heterozygosity
Somatic mutation -

Inactivation of the remaining
wild-type copy of the same

MMR gene (tumor precursor cell)

Loss of a critical MMR activity

Replication errors
Endogenous or
exogenous damage

Genetic destabilization
and mutator phenotype

Mutations in APC, ras, DCC, TP53
Mutations in TGFP-RIl

Cancer

Figure 3. Model of cancer development in HNPCC.

this system in cancer can be studied using
different approaches, some of which are
described below:

Microsatellite Instability in Tumor
Tissue. a) Microsatellite sequences from
normal and tumor tissue are amplified by
the polymerase chain reaction and the
products separated by polyacrylamide gel
electrophoresis (2). b) The technique can
be automated by the use of fluorescent
primers and a DNA sequencer (69).

Biochemical Assays of MMR
Capacity. a) Heteroduplex DNA con-
taining single base mismatches or dis-
placed loops is incubated with tissue
extract under investigation; heteroduplex
repair measured in various ways (18,70).
b) Studies of complementation of repair
by pairwise mixing of different defective
extracts (19).

Direct Analyses of MMR Gene
Mutations. DNA or RNA from normal tis-
sue (while searching for germline muta-
tions) or tumor tissue (while searching for
germline or somatic mutations) is studied
by different techniques (which are in part
alternative, in part complementary), such
as reverse transcriptase-PCR, protein trun-
cation test, single-strand conformation
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polymorphism analysis, denaturing gradent
gel electrophoresis, two-dimensional DNA
electrophoresis, and sequencing (55,71-73).
A problem is that there are no clear-cut
mutation hot spots in MMR genes.

Functional Analyses to Study the
Effects of MMR Genes and Their
Mutations. a) Human MMR gene intro-
duced into MMR-deficient recipient cells
[from the yeast (74) from the hamster
(75)], possible restoration ofMMR activ-
ity evaluated by microsatellite instability or
biochemical analyses (at experimental
stage). b) Mouse models: PMS2, MSH2,
and MLHI knock-out mice have been cre-
ated that allow studies on mechanisms of

tumorigenesis and screening carcinogenic
and anticancer agents (24,76-79).

Clinically, the molecular characteriza-
tion ofMMR gene mutations in affected
individuals allows genotype-phenotype cor-
relations, and in at-risk individuals from
HNPCC kindreds, it enables predictive test-
ing for cancer susceptibility, enhanced clini-
cal surveillance with the aim of early cancer
detection and cure, and preventive mea-
sures. From the scientific point of view, a
major question that needs to be addressed
by future studies is why MMR deficiency
seems to play an important role in the gene-
sis of some tumors (e.g., those overrepre-
sented in HNPCC) but (at least based on

the absence of microsatellite instability)
does not appear to be involved in others.
Explanations offered so far, which need
further evaluation, include a) structural dif-
ferences in critical cancer-associated "down-
stream" genes (Figure 3), which may make
some of them particularly susceptible to
replication errors (for example, due to the
presence of a repeat sequence within a
coding region as in TGF3-RII, above),
b) redundancy among members of the Mut
family (80), c) tissue-specific differences in
MMR gene expression (16), and d) variable
exposure to exogenous carcinogens, such as
alkylating agents, which may confer selective
advantage to MMR-deficient cells (81).
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